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Finite-size effects in learning and generalization in linear 
perceptrons 

Peter Sollicht 
Department of Physics, University of Edinburgh. Edinburgh EH9 317, UK 

Received 15 August 1994 

Abstract. Most properties of learning and generalization in linear percepmns can be derived 
from the average response function G. We present a method for calculating G using only 
simple matrix identities and partial differential equations. Using this method, we first rederive 
the known result for G in the thermodynamic limit of percept” of infinite size N, which has 
previously been calculated using replica md diagrammatic methods. We also show explicitly that 
the response function is self-averaging in the thermodynamic limit. Extensions of our method 
to more general learning scenarios with anisompic teacher-space priors, input distributions, 
and weight-decay terms are discussed. Finally, finite-sire effects are considered by calculating 
the O ( I / N )  correction to G. We verify the result by computer simulations and discuss the 
consequences for generdiwtion and learning dynamics in linear perceptrons of finite size. 

1. Introduction 

One of the main areas of research within the field of neural networks is the issue of learning 
and generalization. Starting from a set of training examples (normally assumed to be input- 
output pairs) generated by some unknown ‘teacher’ rule V ,  one wants to find, using a suitable 
learning or training algorithm, a student N (read ‘neural network‘) which generalizes 6om 
the training set, i.e. predicts the outputs corresponding to inputs not contained in the training 
set as accurately as possible. If the inputs are N-dimensional vectors I E RN and the outputs 
are scalars y E 2, then one of the simplest functional forms which can be assumed for the 
student N is the linear perceptron. which is parametrized in terms of a weight vector wX 
and implements the linear input-output mapping 

A commonly used leaning algorithm for the linear perceptron is gradient descent on the 
training error Et, i.e. the error that the student N makes on the training set. Using the 
standard squared output deviation error measure, the training error for a given set of p 
training examples, ((I”, y”), p. = 1 . . , p } ,  is 

P P 

”=I p=1 
Et = i ( y ”  - y . . ( ~ @ ) ) ~  = $ (y” - w ~ ~ ” / l / i J ) ~ .  

To prevent the student from fitting noise in the training data, a quadratic-weight decay term 
$hw: is normally added to the training error, with the value of the weight-decay parameter 
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h determining how strongly large weight vectors are penalized. Thus, gradient descent is 
performed on the function E = E, + fhw;. The corresponding learning dynamics is, in a 
continuous-time approximation, dw,/dt = -qVE. where the gradient is taken with respect 
to wN, and q is the learning rate. The effect of q can be absorbed into a rescaling of the 
learning time t ,  and we therefore set q = 1 in the following without loss of generality. 
Evaluating V E  explicitly, one obtains the learning dynamics 

dw,v 
dt  
- = -M,(W,~ - M;’a) 

where we have defined the input correlation matrix 

and 

with 1 denoting the N x N identity matrix. Equation (1.1) has the unique solution 

wN(t) = M;’a + exp(-M,r)(w,(O) - M;’a). (1.3) 
The student weight vector wN thus approaches its asymptotic value M;’a exponentially 
quickly with decay constants given by the eigenvalues of the matrix MA.. 

To examine what generalization performance is achieved by the above learning 
algorithm, one has to make an assumption about the functional form of the teacher. The 
simplest such assumption is that the problem is learnable, i.e. that the teacher, like the 
student, is a linear perceptron. A teacher V is then specified by a weight vector wy and 
maps a given input x to the output y d x )  = w;x/v% We assume that the test inputs for 
which the student is asked to predict the corresponding outputs are drawn from an isotropic 
Gaussian distribution P ( x )  M exp (-4~’)). The generalization error, i.e. the average error 
that a student N makes on a random input when compared to the teacher V ,  is given by 

(1.4) 

Inserting the learning dynamics w,,. = w,&. the generalization acquires a time dependence, 
which, in its exact form, depends on the specific training set, teacher, and initial value of 
the student weight vector, w,(O). We shall confine our attention to the average of this time- 
dependent generalization error over all possible training sets and teachers; to avoid clutter, 
we write this average as ‘simply E&). In order to calculate the average over training sets, 
we assume that the inputs xp in the training set are chosen independently and randomly 
from the same distribution as the test inputs. The corresponding training outputs an taken 
to be the teacher outputs corrupted by additive noise, y” = yv(x”) + 11”. where the tf are 
independent random variables with zero mean and variance 6’. To perform the average 
over teachers, we assume that the teacher weight vectors are sampled randomly from an 
isotropic Gaussian prior probability distribution, P (wv) M exp ( -4~: ) .  The resulting 
average generalization error in the limit of infinite learning time, f + ca. is [ 11 

1 
Eg = f((YM(X) - Y”(“))2)p(z, = ,CWN - w 2 .  

where G is the average of the responsefunction over the trajning inputs 
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A result of the same form also holds for learning from a perceptron teacher with a general 
nonlinear output function [2]. If noise is added to the learning dynamics, a term of the 
form i T G  is added to ( I S ) ,  with the 'learning temperature' T measuring the variance of 
the learning noise [I]. 

For the calculation of the time dependence of the average generalization error it is 
convenient to assume tabula rasa initial conditions, wN(0) = 0. Combining (the dynamics 
solution) and (1.4), one obtains [ 11 

where p(a) is the average eigenvalue spectrum of the input correlation matrix A. The 
essence of (1.7) is that for I > 0 the long-time behaviour of the (average) generalization 
error is dominated by an exponential decay with decay constant A + amin. where amin is 
the minimum (average) eigenvalue of A, i.e. the smallest a for which p(a) is non-zero. 
Formally, p ( a )  can be defined as 

where we have denoted the eigenvalues of A by ai (i = 1 . . . N ) .  Using the identity 

1 .  1 
S ( x )  = - lim Im - 

r s - o t  x - i c  
one finds that p(n)  can be expressed as [31 

Thus, the singularities of the average response function G in the complex A plane determine 
the average eigenvalue spectrum of the input correlation matrix A. 

Equations (1.5) and (1.9) show that the key quantity determining learning and 
generalization in the linear perceptron is the average response function G defined in (1.6). 
This function has previously been calculated in the 'thermodynamic limit', N --f 00 at 
01 = p / N  = constant, using a diagrammatic expansion [4] and the replica method [5,6]. 
In section 2, we present what we believe to be a much simpler method for calculating G ,  
based on simple matrix identities. We also show explicitly that the response function E is 
self-averaging in the thermodynamic limit, which means that the fluctuations of E around 
its average G become vanishingly small as N + 00. This implies, for example, that the 
generalization error is also self-averaging. In section 3, we extend our method to more 
general cases such as anisotropic teacher-space priors and input distributions, and general 
quadratic penalty terms. Finally, finite-size effects are considered in section 4, where we 
calculate the 0 ( 1 / N )  correction to G, verify the result by computer simulations and examine 
the resulting effects on generalization and learning dynamics. In section 5 we conclude with 
a brief summary and discussion of our results. 

2. The method 

Our method for calculating the average response function G is based on a recursion relation 
relating the values of the (unaveraged) response function E for p and g+l training examples. 
Assume that we are given a set of p training examples with corresponding matrix M,. By 
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adding a new training example with input I. we obtain the matrix MZ = M,<, + +$. It 
is straightforward to show that the inverse of M: can be expressed as 

(One way of proving this identity is to multiply both sides by MZ and exploit the fact that 
M2M;' = 1 + ?-xxTM;'.) Taking the trace, we obtain the following recursion relation 
for 9: 

N 

Now denote zi = &xrM;'x (i = 1,2). With z drawn randomly from the assumed input 
distribution P(z) a exp (-fz'), the zi can readily be shown to be random variables with 
means and (co-)variances 

2 
(AzjAzj)  = - t1M-j-j 

1 
(2;) = - tr MN' 

N N2 *' 
where we have used the notation Azr = zi - (zi). Combining this with the fact that for 
k > 0, ~ I M ; ~  < Nh-k = O(N), we have that the fluctuations Azi of the zi around their 
average values are O ( l / f i ) ;  inserting this into (2.2). we obtain 

Starting from G(0) = I/h, we can apply this recursion p times to obtain G ( p )  up to terms 
which add up to at most O(pN-3/2). This shows that in the thermodynamic limit, defined 
by N CO, tu = p/N = constant, the response function G is self-averaging: whatever 
the training set, the value of G will always be the same up to fluctuations of O(N-'/2). In 
fact, in section 4 we shall show that the fluctuations of p are only 0(1/N). This means 
that the O(N-3/2) fluctuations from each iteration of (2.3) are only weakly correlated, so 
that they add up like independent random variables to give a total fluctuation for G ( p )  of 

We have seen that, in the thermodynamic limit, B is identical to its average, G ,  
because its fluctuations are vanishingly small. To calculate the value of C in the 
thermodynamic limit as a function of 01 and A, we replace 9 by C in (2.3), insert the 
relation G ( p  + 1) - G ( p )  = $aC(tu)/atu+O(l/NZ), and neglect all finite N corrections. 
This yields the partial differential equation 

0 ( ( ~ / ~ 3 ) 1 / 2 )  = o(I/N). 

-0 ac ac I 
atu ah I + G  (2.4) 

which can readily be solved using the method of characteristic curves. A brief account of 
this method can be found in the appendix. Using the initial condition G l u = ~  = l j h ,  one 
obtains l / G  = +tu/(l + C) which leads to the well known result (see, for example, [41) 

1 
2h 

G 7 -(I -tu - h f J(1 -tu - + 4 h ) .  
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In the complex A plane, G has a pole at A = 0 and a branch cut arising from the root; 
according to (1.9), these singularities determine the average eigenvalue spectrum p(a)  of 
A, with the result 131 

1 p(a)  = (1 - CU)@(I - cY)&(a) + --J 2na (a+ - a)(a - a - )  

where O(x)  is the Heaviside step function, @ ( x )  = I for x > 0 and 0 otherwise. The root 
in (2.6) only contributes when its argument is non-negative, i.e. for a between the ‘spectral 
limits’ a- and a+, which have the values a+ = (1 & a*. Since G is self-averaging, 
the fluctuations of the true eigenvalue spectrum of A around its average p ( a )  are also 
vanishingly small in the thermodynamic limitt. 

3. Extensions to more general learning scenarios 

We now discuss some extensions of our method to more general learning scenarios. First, 
consider the case of an anisotropic teacher-space prior, P ( q )  cx exp(-fw:X;lw,), with 
symmetric positive-definite covariance matrix E”. This does not affect the definition of the 
response function, but (1.5) now has to be replaced by 

with a renormalized noise level Z2 = U’/(; tr 2”). The factor L) WEv determines by 
how much the average squared length of the teacher weight vector IS now larger than for 
the isotropic teacher-space prior considered in the previous section. This factor also scales 
the size of the typical squared teacher output. Therefore, it appears as a multiplicative 
factor in the generalization error, and also determines the renormalized noise level (which 
is, effectively, a mean-square noise-to-signal ratio). 

As a second extension, assume that the inputs are drawn from an anisotropic distribution, 
P(z) w exp(-$z’X:-’s). It can then be shown that the asymptotic value of the average 
generalization error is still given by (1.5) if the average response function is redefined to 
be G = (ktrEM;’). This modified response function can be calculated as follows: first 
we rewrite G as (L tr(AE-’ + A)-’), where A = I C (fI”)T3i.J’ is the correlation matrix 
of the transformed input examplest 6” = C - ’ k C ,  Since the 8” are distributed according 
to P(Z’) cx exp (-f(ffi)’). the problem is thus reduced to finding the average response 
function G L  = (BL) = (k tr(L+ At-’) for isotropically distributed inputs and L = LE-’. 
As explained in the appendix, a differential equation analogous to (2.4) holds for G L .  
Together with the initial condition G L I ~ ~  = k t r L - ’ ,  one obtains GL as the solution of 
the implicit equation 

N. 

n! N I ”  

As explained above, the modified response function G = (htr EM;’) for the case of an 
anisotropic input distribution considered here is given by the value of GL which solves (3.1) 
for L = AX-’. If the eigenvalue spectrum of X has a particularly simple form, then the 
resulting dependence of G on (Y and h can be expressed analytically, but, in general, (3.1) 
will have to be solved numerically. 

f More precisely, the Ructumions o f  linear functionals of the eigenvalue spectrum of A (which is, mathemtio3lly, 
a distribution) vanish JS N + M. 

i We write E-‘/’ for the unique positive-definite symmetric matrix which obeys X-’/zE-’12 =E1. 
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Finally, one can also investigate the effect of a general quadratic weight-decay term, 
$.u:hwh,. in the energy function E which defines the gradient descent learning dynamics. 
This modifies the definition ( I  .2) of the matrix MA. to M, = A + A, and the calculation of 
the average generalization error becomes more complicated in this case. In addition to the 
average response function G = (i tr M;' ) , which can be obtained as the solution of (3. I )  for 
L =  A, one now also needs to know the modified response functions = (k trA"M;') 
for n = 1,2. Fortunately, it is possible to calculate the general modified response function 
G E L  = (k trB(L + A)-') for positive-definite symmetric L and a general matrix B by 
extending the methods of the previous section. As outlined in the appendix, in the 
thermodynamic limit one obtains a differential equation for G B L  similar but not exactly 
identical to (2.4), which can be solved to give 

Thus, G E L  can be calculated straight away once G L  is known. In the specific case of a 
general quadratic weight decay which we consider here, one has L = A and G L  = G, 
and by setting B = A and A' in (3.2), one obtains GA = I - ruC/(l + G )  and 
CA' = k trA-a/(1+G)+or2G/(1 t G)'. Using these relations, the average generalization 
error can be written in terms of G alone, although the final expressions become rather more 
cumbersome than (1.5). We note parenthetically that expressions (3.1) and (3.2) can also 
be obtained using diagrammatic methods [7]. 

4. Finite-size effects 

So far. we have focused attention on the thermodynamic limit of perceptrons of infinite 
size N .  The results are clearly only valid approximately for real, finite systems, and it 
is therefore interesting to investigate corrections for finite N ,  This we do in the present 
section by calculating the 0 ( 1 / N )  corrections to G, cs(L + 00). and p(a).  First note that, 
for X = 0, the exact value of the average response function is [8] 

1 
N 

G / A ~  = -(trA-') = (01 - 1 - l / N ) - '  (4.1) 

for 01 =- 1 + 1 / N .  This result follows straightforwardly from the fact that the inverse input 
correlation matrix. A-', obeys an 'inverted Wishart distribution' (see, for example, [9], 
definition 8.1 and exercise 8.7). Equation (4 .1 )  clearly admits a series expansion in powers 
of 1 / N .  Assuming that a similar expansion also exists for non-zero A, we write 

G = Go + G I / N  + O ( l / N z ) .  (4.2) 
Here Go is the value of G in the thermodynamic limit as given by (2.5). We calculate GI  
below, and verify the analytical result by computer simulations. Note that there is no a priori 
guarantee that an expansion of the type (4.2) exists (compare, for example, the results of [ IO], 
which suggest that for the binary perceptron, finite-size effects depend non-analytically on 
l / N ) .  However, the simulation results presented below do provide compelling evidence for 
the existence of the expansion (4.2) of the average response function in powers of 1 / N .  

For finite N ,  not only the corrections to the average response function G but also the 
fluctuations AG = Q - G of Q around its average value G become relevant. For X = 0, the 
variance of these fluctuations is known to have a power-series expansion in I / N  (see, for 
example, [ 1 I]), and again we assume a similar expansion for finite X, 

((AG)') = A * / N  + O(l /N ' )  
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Here the first term is O( 1 I N )  and not O( 1) because, as discussed in section 2, the fluctuations 
of B for large N are no greater than O(N-'/'). 

To calculate G I  and Az, we start again from the recursion relation (2.2). However, now 
we cannot neglect terms involving Azi and AG, but have to expand everything up to second 
order in these fluctuation quantities. Averaging over the training inputs and collecting orders 
of 1/N yields, after some straightforward algebra, the known equation (2.4) for Go and 

(4.3) 
By squaring the difference between (2.2) and its average over the training inputs, one can 
similarly derive an equation for A': 

A* aGo 
(4.4) 

Details of the solution of these two partial differential equations are again relegated to the 
appendix. At a = 0, one has B = G = Go = l / i  and hence GI  = A' = 0; using these 
initial conditions, one finds A* = 0 for all a and A, and 

_ aA* aA* 1 
aa ah I +co (I + cO)2 ah ' 

- - _- = -2 

Gi(1 - AGO) 
GI  = 

(1 + XCf)' ' 
(4.5) 

In the limit A + 0, GI  = l / (a  - l)', consistent with (4.1); likewise, the result A' 0 
agrees with the exact series expansion of the variance of the fluctuations of G for h = 0, 
which begins with an O(l/N') term [ I l l .  

Before exploring the consequences of the result (4.5) for finite-size effects in 
generalization and learning dynamics, we present the results of computer simulations, 
performed to test our analytic predictions. For perceptron sizes between N = 4 and 80, we 
calculated the response function by direct matrix inversion, averaging over between 1200 
(for N = 80) and 200000 (for N = 4) randomly sampled sets of training inputs to obtain 
an 'experimental' value of the average response function. In figure 1, we plot the results 

Figure 1. Simulation results for the avenge response function G at finite perceptron size N ,  
for different values of the weight decay panmeter, A. and the number of mining examples 
(normalized by N), a .  The plots of (G - G ~ ) / G I  versus I I N  show that as 1 / N  approaches 
zem, the results (symbols connected by dotted curves 35 a visual aid) are well approximated by 
(G - Co)/Gi = I / N  (broken curve). in agreement with (4.2). Statistical emls due to the finite 
numbers of simulation samples are smaller than the symbol size. 
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in the form (G - Co)/Cl versus I /N for M = 0.5, 1 and 2, and h = 0.01.0.1 and I ,  using 
the results for CO and G I  from (2.5) and (4.5). The simulation results are seen to agree 
well with the theoretical prediction from (4.2). namely, (G - GO)/GI = 1 / N  + O ( l / N 2 ) .  
The O(l/N’) terms, which correspond to corrections to G of second and higher order in 
1/N, appear as deviations from the straight line (G - Go)/Gl = 1/N in figure 1 for larger 
values of 1/N. These higher-order corrections are expected to be negligible as long as 
1/N << GO/GI, because this entails that the first-order correction G j / N  is already small 
compared to the zeroth-order contribution Go. Correspondingly, the strongest higher-order 
corrections in the plots in figure 1 are seen to occur for 1 = 0.0l.a = 1, which can be 
checked to see that it has smallest value of GO/GI amongst the plots. 

We now turn to the finite-size corrections to the generalization error. From the 1 / N  
expansion (4.2) of G we obtain a corresponding expansion of the asymptotic value of the 
average generalization error, which we write as 

cg(f + CO) = 4.0 + cg,i/N + O(l/N’) 

From (lS), the explicit expressions for cg.o and E ~ , ,  are 

For given E ~ , O  and cg.l, we can distinguish three regimes for the size of the perceptron, N. 
For N >> N, = ]6g,,/c8,~[, the result cg(f + w) = E ~ , O  obtained in the thermodynamic limit 
is a good approximation. For smaller values of N, the first-order correction c s . l / N  has to 
be taken into account. Finally, for N C N ,  we expect the series expansion of E& -+ CO) in 
powers of I / N  to break down altogether, since all terms in the series become of comparable 
order of magnitude. In figure 2, we plot cg.o and cg,l for several values of h and U’. The 
graphs suggest that the relative correction Icg,~/(Nc8.0)l-and hence Nc = I E ~ , I / E ~ , o ~ - ~ s  
largest when 1 is small and 01 is close to 1. The exact dependence of N, on a, h and U’ ,  

however, is rather complicated. We confine ourselves to bounding Nc in the form 

N~ < max N,(o~, A ,  U’) = N~(CX. 1) 
“2 

by maximizing over the noise parameter U’ (which, in an experimental setting, is beyond 
our control anyway). This bounding operation is easily performed since Ne = I E ~ , I / E ~ , o ~  
attains its maximum WRT U’ either at U’ = 0 or for U’ -+ 00, due to the monotonicity of 
E ~ , ~ / E ~ , O  as a function of U’.  We plot the resulting N&, h)  in figure 3 for several values 
of h. Nc(a, h)  is maximal for A + 0; evaluating this limit, we obtain7 

for O c a <  1 
(4.6) 

1/(1 - f f )  
(301 i 1)/[01(a - l ) ]  for 01 > 1 .  

Nc < max N,(a, A) = N,(M) = 
a 

Therefore, results for cs(t --t 00) derived in the thermodynamic limit will be valid for 
any h and U* provided that N >> Nc(ru). For large 01, N&) = 3 / ~  + O(l/or*), and the 
condition N >> A’&) will easily be fulfilled. For finite h and near 01 = 1, the bound (4.6) is 
unnecessarily pessimistic, as figure 3 shows. To remedy this, we have verified numerically 
that for h > 2, Nc(a, A) attains its maximum WRT a for a -+ 0. From this one can derive 
an alternative bound for N,, 

21 - 1 
NE < max N&, A) = - 

U (h + 1)‘ for h > 2 

t Note that both NC(ol. A) and N,@) x e  discontinuous at CI = 0: their limits I CI -b 0 m, in general. non-zero. 
whereas at U = 0, where cg,, vanishes. lhey are both zero. 
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1.5 

x = 0.001 
A = O . O l  1 .o ___. . . .. 

0.3 

0.2 

0.1 

0.0 -0.5 

0.5 

0.0 

0.0 0.5 1.0 Lv 1.5 2. 0.0 0.5 l . o r u l s  20 

Figure 2 Average generalization error: result far N --t 00, G ~ J ,  and 0 ( 1 / N )  correction, eg,l .  
Culves are labelled by the value of the weight decay parameter 1. (a) Noire-free teacher, 
0’ = 0. (b)  Noisy teacher, r1 = 0.5. 

Figure 3. Critical perceptcon size N&. A):  for N > 
Nc(cr, A). the results for the avenge generalization error 
~ ~ ( t  + m) obtained in the themodynmic limit are valid 
toagood approximation. for any noise level U’. Note thar 
the m i m u m  of N& A) WKT A is obtained for A 4 D. 

which is independent of 01 and CT* and will be tighter than (4.6) near a = 1 and for 
sufficiently large A. 

We now turn to the 0 ( 1 / N )  correction to the average eigenvalue spectrum p(a) of the 
input correlation matrix A. We set 

~ ( 0 )  = Po@) + p i ( a ) / N  + O ( l / N 2 )  (4.7) 

where po(a) is the N + 00 result given by (2.6). From (1.9) and (4.5) one then derives 

Figure 4 shows sketches of p&) and pj(n). Note that I d a  p l ( a )  = 0, as expected since 
from the definition (1.8) the normalization of p(a), [dap(a) = 1, is independent of N .  
Furthermore, there is no O ( I / N )  correction to the 6-peak in po(a) at a = 0, since this 
peak arises from the N - p zero eigenvalues of A for (Y = p / N  < I and therefore has an 
exact height of 1 - a for any N .  The &peaks in p1 (a) at the spectral limits a+ and a- 
are an artefact of the truncated 1 / N  expansion: p ( a )  is determined by the singularities of 
G as a function of A,  and the location of these singularities is only obtained correctly by 
resumming the full l / N  expansion. The &peaks in pl (a) can be interpreted as ‘precursors’ 
of a broadening of the eigenvalue spectrum of A to values which, when the whole 1 /N  
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(1 -a)Q(1 -a) 

Figurc 4. Schematic plot of the average eigenvalue specmm p(u) of the input correlation 
matrix A. ( U )  Result for N --t m, ,%(U). (b) 0 ( 1 / N )  correction, pl(a). Arrows indicate 
&peaks a d  are labelled by the corresponding heights. 

series is resummed, will lie outside the N + CO spectral range [a-, a+]. The negative 
term in p1 (a) represents the corresponding ‘flattening’ of the eigenvalue spectrum between 
a- and a+, We can thus conclude that the average eigenvalue spectrum of A for finite 
N will be broader than for N -+ CO. This implies that the learning dynamics given 
by (1.7) will be slower for finite N than predicted from the thermodynamic-limit results, 
since the smallest eigenvalue amin of A will be smaller than a-, the lower spectral limit for 
N + CO. 

Note that our prediction of a broadening of p(a) for finite N can also be confirmed by 
considering the extreme case N = 1: in this case, the matrix A becomes the scalar sum 
of p Gaussian random variables with zero mean and unit variance. Hence, p(n) is just the 
probability density of a X2-distfibution with p degees of freedom, which is non-zero for 
all a > 0, i.e. over a much broader range than the spectrum [a-, a+] predicted for N + CO. 

From our result for pl(a) we can also deduce when the N + CO result p&) is valid 
for finite N :  the condition turns out to be N >> a/[@+ - a ) @  -a-) ] .  Consistent with our 
discussion of the broadening of the eigenvalue spectrum of A, N has to be larger for a near 
the spectral limits a- and a+ if &(a) is to be a good approximation to the f i n i t e N  average 
eigenvalue spectrum of A. 

Finally, in figure 5 we present exemplary results from computer simulations of the 
average eigenvalue spectrum of the input correlation matrix A. We show the results for 
01 = 10 and N = 4, N = 8, which are based on lo7 and 2 x lo6 randomly sampled sets of 
training inputs, respectively. The average eigenvalue spectrum p(a) was found by sorting 
the numerically determined eigenvalues of A into 100 histogram slots, evenly spaced across 
the spectral range shown in figure 5, and then applying a suitable normalization. Instead of 
displaying the resulting p ( n )  directly. in figure 5 we plot the quantity N ( p ( a ) - p o ( a ) ) ,  which 
should approach p~ (a) for large N from (4.7). This approach can already clearly be seen 
for the relatively small values of N used in our simulations; consistent with our discussion 
above, the deviations of N ( p ( a )  -&(a)) from p,(a) are largest near the N -+ CO spectral 
limits a- and a+. where the finite-size corrections to p(a) of first, and hence also of higher, 
order in 1 / N  are largest. We note parenthetically that the results of more extensive computer 
simulations for perceptron sizes N = 2 . .  .6  suggest that for any a, N ( p ( a )  - p&)) as 
a function of a has 2 N  turning points between a- and a+ (compare with figure 5(a)); it 
remains an open question whether this remains true for large N and if so, whether there 
exists a proof for this property. 
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Figure 5. Simulation results for the average eigenvalue spec". &a), of the input correlation 
matrix A, fora = 10 and (a )  N = 4, (b)  N = 8. Shown is lhe swled difference N(p(a) -po(a) )  
(full cuwe), which should approach pr (a )  (dotted curve) for large N from (4.7). The mows 
indicate the delta-peak contributions to PI at the N -+ 00 s p e n n l  limits a* = ( I  5 
(compare (4.8) and figure 4): lypical e m r  bars for the simulation results are shown in the legend. 

5. Summary and discussion 

We have presented a new method, based on simple matrix identities, for calculating the 
response function G and its average G which determine most of the properties of learning 
and generalization in linear perceptrons. In the thermodynamic limit, N -+ CO, we 
have recovered the known result for G and have also shown explicitly that G is self- 
averaging. We have then demonstrated the versatility of our method by extending it 
to more general learning scenarios. Finally, we have calculated the 0(1/N) correction 
to G, which was found to agree well with the results of computer simulations. The 
corresponding correction to the average generalization error has been obtained, and explicit 
conditions have been derived on how large N has to be for the results obtained in the 
thermodynamic limit to be valid. We have also calculated the 0(1/N) correction to the 
average eigenvalue spectrum of the input correlation matrix A and interpreted it in terms of 
a broadening of the spectrum for finite N, which will cause a slowing down of the learning 
dynamics. 

We remark that the 0(1/N) corrections which we have obtained can also be used in 
different contexts. For example, the generalization error can be estimated by the test error, 
obtained by comparing the outputs of student and teacher on a finite number of randomly 
chosen test inputs. Using our results, test error fluctuations can be analysed, and an optimal 
test-set size can be derived for the case where the total number of training and test examples 
is limited [l l] .  Another application is in an analysis of the evidence procedure in Bayesian 
inference for finite N, where optimal values of 'hyperparameters' like the weight decay 
parameter h are determined on the basis of the training data [ 121. We hope, therefore, 
that our results will provide the basis for a systematic investigation of finite-size effects in 
learning and generalization. 
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Appendix. 

In this appendix, we briefly describe the method of characteristic curves for the solution of 
partial differential equations, following the exposition in [13]. We then apply the method to 
obtain the solutions of the differential equations for the various response functions introduced 
in the paper. 

Consider the following quasi-linear first-order partial differential equation for f ( x ,  y), 

where a, b and c are functions ofx, y and f. The solution f = f ( x ,  y) can be thought of as 
a surface in (x, y, f) space, which has normal vectors proportional to (af/ax, a f p y ,  -1). 
Equation (A.1) can then be interpreted as defining a vector field (a, b, c) of 'characteristic 
directions', which are orthogonal to the normal vectors of the solution surface. This suggests 
that any curve starting at a point within the solution surface remains within that surface if 
it follows the characteristic direction at every point. Formally, such 'characteristic curves' 
are defined by the requirement d(x, y. f)/dr = ( U ,  b, c ) ,  where t pxametrizes the points 
along the curve. It can be shown rigorously [ 131 that the solution surface is indeed given by 
the union of all characteristic curves which pass through a one-parameter family of points 
defining the initial conditions for f ( x ,  y). 

Now consider equation (2.4) for the averase response function G in  the thermodynamic 
limit. The characteristic curves are the solutions of 

dG - = o  dh 1 d a  - = I  
dt dt 1 + G  dt 

a = a0 + t A = Ahg - - G = G o .  (A.2) 

The initial condition GI,=o = l / A  selects the characteristic curves with a0 = 0, A0 
arbitrary, Go = l/Ao. Inserting this into (A.2), one can eliminate ao. Ao, Go and f to 
obtain 1/G = A + a/(1 + G). This yields the solution (2.5) for G(u, A). 

We now turn to (3.1) for the modified response function G L  = (BL) = (A tr(L+A)-'). 
To obtain this result, one first replaces the matrix L by L+ A l .  The recursion relation (2.2) 
between E ( p  + 1) and B ( p )  remains valid for BL, and results, in the thermodynamic 
limit, in a differential equation for C L  exactly analogous to (24), with G replaced by G L .  
The corresponding characteristic curves are the same as in (A.2), but the initial condition 
GL~==o = A tr(L+ AI)-' now selects a different set of Characteristic curves. This leads to 
the equation G L  = k tr[L+ (A +a/(l  + G L ) ) ~ ] - ' ,  from which (3.1) is obtained by setting 
A = 0. 

The solution for the general modified response function G E L  = (h trB(L+A)-') given 
in (3.2) is obtained as follows: first, one again replaces the matrix L by L + h l .  Multiplying 
the matrix equation (2.1) by B and taking the trace, one can follow the procedure described 
in section 2 to obtain, in the thermodynamic limit, the differential equation 

- = _- 
which are given by 

t 

1+Go 

-0. aGBL acsL 1 
aa ah i + c L  

Since G L  is a fairly complicated function of a and A, the corresponding characteristic 
equations 
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might seem hard to solve. However, G L  is, in fact, constant along the characteristic curves: 
as pointed out above, CL obeys (2.4) (with G replaced by GL),  and hence 

Therefore, the characteristic curves are 
f 

a = c ~ o + t  h = h o - -  GEL =constant. 
1 + G t  

Together with the initial condition Gsrl.=o = atrB(L+ AI)- ' ,  this yields G E L ~ ~ = o  = 
N ti  B[L+ (A + u/(1+ G ~ ) ) l ] - l .  Equation (3.2) is recovered for h = 0. 

Finally, for the solution of (4.3) and (4.4), one first verifies that A' 3 0 satisfies (4.4) 
and the corresponding initial conditions; of course, this solution can also be obtained using 
the method of characteristic curves. One can then simplify (4.3) by inserting A* = 0 and 
by using the fact that Go, the value of G in the thermodynamic limit, obeys (2.4) (with G 
replaced by Go). After some algebra, one obtains 

Here we have introduced the abbreviations Gb = aGo/au and Gg = a2Go/&. By the 
same reasoning as above, one can show that Go is constant along the characteristic curves 
of (A.3). The characteristic curves obeying the initial condition Gllcr=0 = 0 are therefore 
given by 

with Gl(t = 0) = 0. The constant value of CO along a characteristic curve is related to l o  
by Go = Go(t = 0) = G o ] ~ = A ~ , ~ = o  = l/ho. Using the explicit form of G&, A), both Cb 
and Gg can be expressed as functions of Go and h alone as follows: 

This finally leads to the following linear differential equation for G, as a function of h 
along a characteristic curve with a given value of Go: 

Since h = ho = 1/Go at t = 0, the initial condition is G,(A = ] /Go)  = 0. The integration 
of (A.4) is straightforward and yields directly the solution (4.5) given in the text. 
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